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We consider the low Rossby number ( R )  flow of a stratified fluid in a long rotating 
channel, for which the bottom elevation varies in the downstream direction. 
The quasi-geostrophic response is shown to be singular a t  the side walls of the 
channel, and thus an ageostrophic analysis is necessary even for vanishingly 
small R. Part of the ageostrophic steady-state response is a modified quasi- 
geostrophic perturbation trapped near the bottom. A second component which is 
present even as R approaches zero is an internal Kelvin wave whose vertical 
wavelength adjusts so that the wave remains stationary with respect to the 
channel bottom and which propagates energy and momentum to infinite heights 
in an unbounded channel. The case of a bounded layer of fluid is also considered, 
and the resonance conditions are given. We also calculate the flow field when the 
bottom elevation varies in the cross-stream direction. We conclude that stag- 
nation or flow reversal can be caused either by the modified quasi-geostrophic 
component or by the Kelvin wave and estimate the critical condition by an extra- 
polation of the perturbation velocity computed from linear theory. 

1. Introduction 
The major part of the energy in geophysical flows is in the large-scale motions, 

a fact which is often explicitly taken into account by considering a quasi- 
geostrophic development of the equations of motion. In such a development the 
velocities which appear in the equation for the time rate of change of the vertical 
vorticity are determined from the zeroth-order balance between the Coriolis 
force and the pressure gradient. It is known, however, that this procedure has 
the effect of filtering out the inertia-gravity waves which would otherwise be 
present in a shallow-water, or hydrostatic formulation. If there exist systematic 
couplings between geostrophic and inertial scales over long periods of time, then 
suchinteractions will be excluded from a quasi-geostrophic analysis. For example, 
recent observations (Parker 1971; Richardson, Strong & Knauss 1973) have 
shown that the geostrophic eddies which are shed from the Gulf Stream take 
a number of years to decay, and the mechanism by which energy is lost is unknown. 
This mechanism is of considerable importance in developing an understanding 
of the energy balance of the fluctuations in the large-scale circulation. In  addi- 
tion, we note that there are many unresolved questions regarding large amplitude 
inertial wave packets (Webster 1968). A question which hence arises is whether 
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there can be significant spectral coupling between these two forms of motion, 
whereby the energy that is lost from the geostrophic eddies reappears as a source 
for inertial oscillations. 

Although we do not here address ourselves directly to the geophysical question 
raised above, we believe that the theoretical and experimental investigation of 
ageostrophic effects in simple systems such as that considered below illuminates 
some of the possible interaction processes. The spectral coupling in our example 
is provided by the flow of a stratified fluid over variable bottom topography 
between vertical walls in a uniformly rotating system. As such it represents an 
extension of the many investigations of stratified flow over an obstacle, as docu- 
mented, for example, by Miles (1969). The novel addition of our analysis is the 
inclusion of vertical walls, in consequence of which the response contains a 
significant internal Kelvin wave and other ageostrophic effects even as the Rossby 
number approaches zero. 

In order to explain some of the features which occur in a stratified fluid 
we first consider, in 5 2, the flow of a homogeneous fluid over a smoothly varying 
step between two vertical walls (figure 1). The nonlinear potential vorticity 
equation can be integrated exactly in this situation to determine the downstream 
velocity in terms of the uniform flow. Given the geometry and rotation rate, for 
sufficiently large upstream velocities, the flow everywhere has a positive down- 
stream component. A critical upstream velocity exists, however, below which the 
flow in part of the channel is blocked in the sense that no streamline originating 
upstream enters this blocked region. Part of the analysis presented below is 
aimed at  investigating the corresponding effect of streamline stagnation for a 
stratified fluid. 

The analysis is developed for the stratified flow over a fixed bottom of small 
slopein aninfinitely long channel (figure 2), though a laboratory experiment might 
be more conveniently performed by towing an obstacle over the bottom through 
an otherwise quiescent fluid. In addition, our infinitely long channel might be 
replaced in the laboratory by an annulus of width small compared with its radius. 
Either way, a quasi-geostrophic analysis for sufficiently long waves or sufficiently 
small relative speeds V yields a simple geostrophic response with the disturbance 
trapped near the bottom by the stratification. 

This is not the complete response, however. No matter how small the Rossby 
number is there willalways be aninternal Kelvin wavegenerated that is stationary 
with respect to the obstacle and whose vertical wavelength is thus determined by 
the flow speed and the static stability. The Kelvin wave transfers energy and 
momentum to infinite heights in an unbounded fluid, while in a bounded fluid it 
can cause resonant amplification if V is small or a hydraulic jump if V exceeds the 
maximum horizontal velocity of a free Kelvin wave. In  the simplest geometry, 
for which there is no variation in the bottom topography across the channel, the 
quasi-geostrophic analysis is singular and leads toinfinitevelocitiesin the channel 
corners. An ageostrophic analysis eliminates this difficulty and indicates that the 
velocities are everywhere bounded with a magnitude which varies logarithmically 
with Rossby number for small Rossby numbers. This ageostrophic effect is 
weakened if the bottom topography varies smoothly across the channel in such a 
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way that the height of the bottom vanishes a t  the side walls. I n  this case, the 
quasi-geostrophic analysis predicts velocities which are everywhere bounded. 

The linearized analysis developed may be extended to calculate the critical 
value of the inverse Froude number, based on the Brunt-VaisBIB frequency and 
the maximum obstacle height, in excess of which blocking occurs. For a constant 
cross-channel bottom topography, the critical value can be determined only 
by an ageostrophic analysis, no matter how small the Rossby number. This 
is because the quasi-geostrophic calculation leads to the infinite velocities 
mentioned above and indicates that the flow is blocked for all inverse Froude 
numbers. For a bottom topography which varies across the channel, the calcula- 
tion, to which the ageostrophic effects also make an important contribution, does 
not include the nonlinear effects associated with the flow of fluid around rather 
than over the topography and so the critical value obtained will not be as 
accurate. Nevertheless, it is interesting to determine for a number of different 
obstacles even approximate values of the inverse Froude number above which 
blocked regions exist. 

Such blocked regions, or Ta>ylor columns, over isolated obstacles have been 
recently investigated by Hogg (1973) and Huppert (1974) using quasi-geostro- 
phic analysis for a horizontally infinite, stratified fluid. Taylor columns exist 
in infinite media because when an obstacle is accelerated from rest to a constant 
speed, say V ,  some of the disturbances generated by the obstacle have vanishing 
group velocity and hence remain near the obstacle, since they cannot radiate 
their energy. These disturbances will be altered by the presence of side walls 
because part of their energy can now be radiated by the Kelvin wave. While 
the investigation of such a situation is beyond our analysis, we wish to point out 
the importance of side walls to the Taylor-column problem and suggest that their 
influence be investigated further. 

After discussing the flow of a homogeneous fluid in a rotating channel in $2, 
we develop the equations describing the flow of a stratified fluid over a varying 
bottom topography in a rotating channel of infinite height in $3. We first con- 
sider the flow over a bottom which varies sinusoidally in the downstream 
direction, making use of the simplification that the downstream wavelength is 
large compared with the channel width, the consequences of which we examine 
in appendix A. The solution for the flow over an arbitrary bottom is then obtained 
using Fourier superposition. We discuss the character of this solution and calcu- 
late the critical inverse Froude number for a number of different bottom topo- 
graphies in $4. I n  Q 5, we briefly examine the flow in a channel with only one wall. 
A summary of our more important results is presented in the concluding section. 

2. Stagnation of a homogeneous flow 
We investigate first some elementary properties of the flow of a homogeneous 

rotating fluid and then use these ideas in developing an understanding of the 
stratified flow regime. Consider the system shown in elevation in figure 1. The 
channel, which is doubly infinite in the y direction, consists of two vertical walls 
a t  x = 0 and x = L, a horizontal upper lid a t  x = H and a gradually sloping 
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FIGURE 1 .  An elevation of the channel, bounded by vertical walls at 

x = 0, L, which is considered in $2.  

bottom a t  z = M(y), with M (  - m) = 0 and M ( m )  = M,. The channel rotates 
about the vertical axis with angular velocity S l  = +f. 

The dynamics for the inviscid motion of columns of fluid in a shallow layer are 
described by the conservation of potential vorticity equation 

"(B) =(), 
Dt H - M  

where 6 is the relative vorticity. If the flow far upstream is uniform the potential 
vorticity has the uniform value f / H .  It then follows from ( 2 . 1 )  that ( f + [ ) / ( H  - M )  
is constant everywhere. The horizontal streamlines are deflected laterally as 
columns move up the slope and for sufficiently large y are again straight and 
parallel to the vertical walls. Letting q(z) denote the y component of velocity 
far downstream. we see that 

( 2 . 2 a )  

or q ' ( ~ )  -fM,/H. ( 2 . 2 b )  

Integrating ( 2 . 2  b )  and evaluating the resulting constant by requiring the mass 
flow rate to be identical upstream and downstream, we obtain 

q(a) = - V H  -- fMO(,_&), 
H - M o  H ( 2 . 3 )  

where V represents the velocity far upstream. This represents a linear horizontal- 
shear flow with a velocity which decreases to the right looking downstream. 

This velocity will be somewhere negative and there will hence be blocking if 

L 
OH +fH - > VH/(H-MO), 

that  is, if the Rossby number 

( 2 . 4 )  

R = V/ (  f L )  < M,( H - Mo)/2H2, ( 2 . 5 a ,  b )  
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( 2 . 6 ~ )  

= 2R+4R2+O(R3) (R + 0). (2.6b) 

Mo/H > -&[I - ( f  - 8R)4] or 

The second solution of (2.5) has been discarded because it is the minimum critical 
condition, expressed by (2.6), which is sought. 

The above theory needs to be modified for very small values of R because the 
Ekman suction velocities arising from the viscous boundary layers then produce 
significant effects that need to be added to the inertial effects considered above. 
For a discussion of the viscous regime the reader is referred to Huppert & Stern 
(1974). 

A blocking effect that is qualitatively similar to that discussed above has been 
observed by Faller in an experiment cited by Phillips (1963). An obstacle of 
constant cross-section was placed along a radial arm in a tank filled with water 
and the system rotated at  a constant angular velocity for a time sufficiently long 
for the water to be in a state of rigid-body rotation. A differential velocity be- 
tween the obstacle and the fluid was then generated by an impulsive change in the 
rotation rate. As the fluid adjusted to the new rigid-rotation state, the Rossby 
number steadily decreased. Initially, a t  high Rossby numbers, the water flowed 
over the obstacle, while for smaller Rossby numbers the flow was more nearly 
parallel to the obstacle. Such a result is in qualitative agreement with the 
criterion (2.5). 

3. The stratified, rotating equations and their solution 
In  this section we consider the flow in an infinitely deep channel, while the 

effects of finite depth are considered in $ 5 .  The vertical elevation of the rigid 
bottom is given by x = M(x,  y) = M,h(x/L) s (y /L) ,  where h(x/L)  and s (y /L)  are 
non-dimensional functions of maximum value unity with either s( k 00) = 0 
or else s (y /L)  cyclic. As before, the channel is bounded by vertical walls at  
x = 0, L. A sketch of this system is presented in figure 2. The basic state, with 
N(x, y) = 0, consists of a velocity (0, V ,  0) and a density distribution poe-Pz. The 
Brunt-Viiisala frequency is hence constant and given by 

N = (gP)k (3.1) 

The subsequent analysis is linearized and our aim is to determine the flow 
field resulting from the interaction of the variable bottom and the side walls in 
this rotating stratified system. 

Denoting the perturbation velocity components by (u, v, w), the perturbation 
density by p and the perturbation pressure byp, we write the steady, linearized, 
Boussinesq equations of motion as 

and 

vu, - f v  = -p-1 0 p,, Vv,+fu= -p-1 0 P,, (3% (3.3) 

(3.4) 

Vp,-PPoW = 0 (3.5) 

uz+vv+w, = 0. (3.6) 

0 = gP + Pm 
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FIGURE 2. An  elevation of the channel of semi-infinite depth considered 
in $83 and 4. 

I n  writing clown the above, we have assumed the motion to  be non-diffusive and 
hydrostatic [VZ/(NzL2) << 11 and we have used anf-plane approximation.? 

Eliminating 2, from (3.2) and (3.3), we obtain 

6pu = -p- o1 ( v a x ,  +fa,)P, 

9 = va, ,  + f2. 

97l = - P O  ( va,, -fax) P. 

where 

Similarly, eliminating u, we obtain 

Eliminating p from (3.4) and (3.5), we obtain 

(3.9) 

w = - ( V/N2P0) P,2. (3.10) 

Equations (3.7), (3.9) and (3.10) can now be substituted into (3.6) to yield the 
equation for P :  

This equation has a first integral 

(3.11) 

(3.12) 

where the arbitrary function of integration has been set equal to zero because 
either p and its derivatives vanish as y --f co, or p is cyclic. 

The boundary condition of zero normal velocity a t  x = 0, L is obtained from 
( 3 . 7 ) ,  which upon integration states that 

f p +  Vp, = 0 (x = 0,L) .  (3.13a, b )  

t By f-plane approximation we mean here that: the z axis is perpendicular to the un- 
disturbed, parabolic isopycnals ; the vertical component of the Coriolis force is neglected 
in the momentum equations; and a Cartesian representation is used. 
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The linearized boundary condition at z = 0 is obtained from w = VM, with w 
given by (3.10); hence 

p ,  = -poMoN2h(x/L)s(y/L) (2 = 0). (3.14) 

For the vertically bounded model we require that 

p < m  ( z+oo)  (3.15) 

plus a radiation condition which specifies that the perturbation consists only of 
waves propagating upwards. For a vertically bounded channel the radiation 
condition is unnecessary and (3.15) is replaced by the boundary condition 
w = 0 on the upper lid. 

The system, say S ,  consisting of the differential equation (3.12), the boundary 
conditions (3.13)-(3.15) and the radiation condition is most conveniently in- 
vestigated by expressing s(y/L) in terms of its Fourier transform s^(k), 

s(y/~) = 2% { S,m $(k) e- iky dk ( 3 . 1 6 ~ )  I 
(where9 implies 'the real part of ') and solving for each downstream wavelength 
independently. Introducing the non-dimensional variables f ; ,  5 and $J by the 
transformations, 

x = Lsg, z = ( fL /N)  5 (3.17), (3.18) 

( 3 . 1 9 ~ )  I and p = 2p0 Mo fLN% B(k) $(f;, 6; k )  e-ik* dk 

(3.19 b )  

we substitute (3.16)-(3.19) into S to obtain the system, say S', 

$65 + &t; - kZL2(9 + R29t;t;) = 0, (3.20) 

+ + R &  = 0 ( f ;  = 0, I), (3.21a, b )  

9t; = -h ( f ; )  (5  = 01, (3 .22)  

$ J < m  (5-tm) (3.23) 

plus a suitable radiation condition, where R = V/( fL) .  In  S' the dependent 
variable 9 is (po fLN)-l times the perturbation pressure resulting from the 
flow over the bottom topography 

Moh(x/L) e--ikg. (3.24) 

While in appendix A we present the exact solution of S', the major features of 
the solution can be obtained from a long-wavelength approximation. Thus, we 
let k -+ 0 in 8' to obtain the system Sh, 

(3.25) 

(3.26a, 6 )  

(3.27) 

(3.28) 
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plus a suitable radiation condition. These equations describe the flow field in the 
limit 

kL -+ 0 R 5 O(1). (3.29a, b)  

In  an entirely quasi-geostrophic analysis the governing differential equation 
is still (3.25), but the corresponding boundary condition at  ( = 0 , l  degenerates 
to $ = 0. Thus the system 8; describes the ageostrophic response since the Rossby 
number is included in the side-wall boundary condition (3.26). We remark that 
the long-wavelength limit (3.29) can be forinally obtained by neglecting the first 
term in (3.2), that is by specifying the flow to  be strictly geostrophic in the cross- 
stream direction, but not necessarily in the downstream direction. These long- 
wave equations filter out the inertia-gravity waves but not the Kelvin waves. 

For non-zero values of R, the solution of (3.25) and (3.26) can be written as 

$ = C (An/nn-) xn(E) e-nnc -RBB(<) [sin (C/R) + C cos (C/R)], (3.30) 

where xn(5) = sin nnE - nnR cos n7~E (3.31) 

and 8( ( )  = e-t’R. (3.32) 

The functions xn(5) and 8(<) are the eigenfunctions of the ordinary Sturmian 
system 

co 

?a= 1 

Y”(5) - h2Y(E) = 0, (3.33) 

Y(5)  +RY’(t) = 0 ( E  = 0211, (3.34a, b )  

and thus form a complete orthogonal set on [0 ,  I ]  with inner products 

and 
1 

0 
where (@,W = 1 @ . ( E ) W O d E  (3.38) 

for arbitrary functions (D(5) and Y(E). Differentiating (3.30) with respect to C, 
setting [ = 0, substituting the result into (3.27) and using the orthogonality 
property of the xTL and 8, we determine the A ,  and B as 

(3.39) 

(3.40) 

When (3.30) is substituted into (3.27) the term containing C drops out and hence 
C must be determined from other considerations. 

The radiation condition, which determines the value of C, follows from either 
of two considerations. A disturbance of the form exp (i[/R) corresponds to an 
upward flux of energy (@ > 0 )  for k > 0, whereas exp ( - iC/R) corresponds to 
downward propagation of energy and must hence be neglected. Alternatively, in 
a co-ordinate system moving downstream with speed V ,  computation of the 
group velocity (as explained, for example, by Lighthill 1965) shows that for all k 
the wave propagating energy upward is obtained by setting 

C = i sgn k. (3.41) 
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The normalized pressure response can now be calculated from (3.30), (3.39) 
and (3.40) and the perturbation velocities computed therefrom. For example, for 
the simplest case, for which h ( 6 )  = 1, 

(4/n77)( 1 + n27r2R2)-l (n odd), (3.42 a )  
A, = {o (n even), (3.42b) 

B = 2( 1 + e-lIR), (3.43) 

and the amplitude of the downstream perturbation velocity at  the base of the 
left-hand wall, 5 = 6 = 0, is 

MoN I: A,-iB N -(2MoN/7~)10gR (R+O).  (3.44), (3.45) 
C l  1 

We note immediately from (3.45) that for this case the downstream velocity 
becomes infinitely large as R --f 0. We discuss this divergence further in the next 
section. 

To determine the response for an arbitrary bottom topography we combine 
the various contributions of different wavelengths according to (3.19j to obtain 

(3.46 a) 

is the Hilbert transform of s(r) (see, for example, Erdklyi et al. 1954, chap. 15) 
and the bar through the integral sign in ( 3 . 4 8 ~ ~ )  indicates that only the principal 
part of the integral is to be considered. 

For R _= 0 the normalized pressure response P is given by 

W 

P = 247) I: (nn)-l < h, sin n7rg > sin nn6 e-nnc. (3.49) 
n-1 

4. Interpretation and discussion 
The solution (3.46) is a combination of two parts. The first, expressed by the 

infinite sum, represents a geostrophic response modified by ageostrophic effects, 
which decays with height according to 

exp ( - n.6) or exp ( - niVz/fL), (4.1 a, b )  

and is hence trapped to within a dimensional height f L / ( n N )  from the bottom. 
Since the streamlines have virtually no vertical deflexion above f L / ( n N ) ,  
the reader will see that this trapping height plays a role which is qualitatively 
similar to that played by the lid in the homogeneous flow considered in $2. 
There is a vertical concentration of the streamlines as the stratified fluid flows 
over a rise, thereby inducing anticyclonic shear. 
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I n  order to explain the appearance of the last two terms in (3.46 b )  we remark 
that in an otherwise quiescent fluid there are oppositely propagating free internal 
Kelvin waves attached to both walls. When an obstacle is moved through such 
a fluid it excites only that Kelvin wave whose phase velocity equals the velocity 
of the obstacle. Thus, in the frame of reference used here a Kelvin wave appears 
only on the left-hand wall. This Kelvin wave has zero cross-stream velocity 
everywhere and is trapped to within a distance V f  = RL from the wall. The 
wave propagates to an infinite height with a vertical wavelength given by 
2nV/N = 27r(f/N) RL in dimensional units or 27rR in non-dimensional units. It 
should be noted that for small Rossby numbers the vertical wavelength of the 
Kelvin wave is very much less than the trapping height. 

The vertically propagating internal Kelvin wave gives rise to a wave drag 
on the obstacle as a consequence of the vertical transport of momentum. We also 
point out that owing to the coupling of the quasi-geostrophic and Kelvin com- 
ponents a lateral Reynolds stress occurs. This stress can be evaluated by 
calculating the average of uv over one downstream wavelength, using the rela- 
tionships for A, and B given previously. These stresses will be important in 
modifying the basic current and should be taken into account in a finite ampli- 
tude study. 

The relationship between the perturbation pressure and the downstream 
perturbation velocity is given by (3.9), which in the long-wave limit (3.29) re- 
duces to 

Using (3.46)) we can thus write 
v = P Z b O f ) .  (4.2) 

V I ( M ~ N )  = s (r )  f i A , + , ( < ) e - ~ ~ ~ - ~ ~ ( < )  [s(r)sin K/R) -w) COB (c/R)I, (4.3) 
n = l  

where +,(<) = xk(l)/(n7r) = cosn7r~+nnRsinnn<. ( 4 . 4 ~ )  b)  

An indication of the magnitude of the downstream perturbation velocity 
can be obtained by examining the convergence of the infinite sum in (4.3). 
We show rigorously in appendix B that as R --f 0 the infinite sum diverges, thus 
indicating that the downstream velocity is infinite, a t  the base of the wall < = 0, 
1, 5 = 0, unless h(()  + 0 as < -+ 0,  1.  The explanation of this result is as follows. 
The vanishing of the cross-stream velocity at the side walls < = 0 , l  implies, 
using the downstream momentum equation (3.3) and assuming that v remains 
bounded as R -+ 0, that P = 0 at ( = 0 ,  1 for all C. From (3.14) we see that Ps at 
5 = 0, 1 and C = 0 is proportional to h(<) at ( =  0 , l .  Thus, unless h(<) -+ 0 
as 6 -+ 0, I ,  there is a contradiction between the statements P = 0 for all 5 and 
Pc =t= 0 at < = 0. The implication of this contradiction is that the assumption that 
v remains bounded as R -+ 0 is not valid. 

Turning now to the Kelvin-wave contribution to v, we see from (4.3) that this 
is maximum a t  < = 0 and is of amplitude 

MONB[S2(T) + s"2(7)]4. (4.5) 

B N 2[h(0) + Rh'(0) + O(R2)] (R -+ 0). (4.6) 

Using (3.40) to evaluate I3 for small R, we calculate that  
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Thus the Kelvin wave, which is absent at strictly zero Rossby number, makes a 
contribution to  the horizontal velocity which does not tend to zero1as the Rossby 
number tends to zero if h(0) + 0. This is also true of the vertical velocity. Such a 
discontinuous situation is a familiar consequence of singular perturbation 
problems, indicated in this case by the small parameter R multiplying the 
highest derivative in the boundary condition (3.2 1). 

When the perturbation velocity becomes equal and opposite to the free- 
stream velocity blocking will occur. Although the investigation of such a pheno- 
menon requires a careful consideration of nonlinear effects, we can estimate the 
critical point at which blocking occurs and also conveniently summarize the 
results of our linear theory as follows. We calculate, for given R, the maximum 
negative value of v from (4.3), and equating this to - V determine the maximum 
value of an inverse Froude number 

( ~ o N / V ) , , ,  = K,  (4.7) 

say, for which the present, linearized analysis predicts a flow without a stagnation 
region. Since v is a solution of the two-dimensional Laplacian in (&<) variables, 
it attains its extrema on the boundaries (either side or bottom) of the channel. 
We use this fact in the following investigation of two particular examples. I n  
the first example, we consider the cross-stream profile to be given by h(c) = 1 
and in the second by h(5) = sinnt. For both examples we take the downstream 
profile to be the Witch of Agnesi s(7) = (1 +$)-I, for which 

S(7) = -7( l  +v2)-l, 

although the results should be representative for any s(7) which is an even 
function of 7 and which with its first derivative is continuous in - m < 7 < 00. 

Example (i) h(6) s(7) = (1 + q2)-l. 

Applying to this profile the general considerations discussed above, we con- 
clude that for R = 0,  v is minus infinity a t  < = 1. Thus K approaches zero as 
R + 0. Substituting (3.42) and (3.43) into (4.3) we find that for sufficiently small 
R the maximum negative value of v occurs a t  (&7, 5 )  = (1, ql, O ) ,  where 

and 

(4.8a) 

m 

n = l  
( 4 . 9 ~ ~ )  

(4.9 b) 

I n  (4.9), @(z) is the digamma function (Abramowitz & Stegun 1964, p. 258) and 
y = 0.577 ... is Euler’s constant. Evaluating (4.3) at (1, ql, 0 ) ,  we determine that 

(4.10) 
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FIGURE 3. The parameter K = N M o / B  at stagnation versus the Rossby number. (a) 
M(g ,  7) = Mo/(  1 + ~ 2 ) ,  0 < E < 1. The critical condition is caused by the modified quasi- 
geostrophic component for R < 0.048 and by the Kelvin wave for R > 0.048. (b)  
.!VI([,(sin &/( 1 +72), 0 < E < 1. The critical condition is caused by the modified quasi- 
geostrophic component for R < 0.135 and by the Kelvin wave for R > 0.135. (c)  
M(5,  7) = &foe-[/( 1 +v2),  0 < E < 00. The critical condition is caused by the Kelvin wave 
for all R, The marks with their corresponding number +n at the right edge of the figure 
indicate the resonance position of the first m modes for a bounded channel of maximum 
bottom elevation to depth ratio Mo/H equal to 0.1. 

and hence that K = 27, B-lellR (4.11a) 

(4.1 1 b)  

This critical value of Mo NIV is correct, however, only for 0 < R < 0.048, wherein 
0 > rl > - 0.9 x For R > 0.048 the maximum negative value of v is due 
entirely to the Kelvin wave. This maximum value, which occurs a t  ( O , O ,  t&), 
where 

& = (2n-h)nR 

for positive integer values of n sufficiently large that the first term in (4.3) may 
be neglected, is given by 

v ( O , O ,  b) = -M,NB. (4.12) 

Hence K = B-l (R > 0.048). (4.13) 

These results are presented graphically in figure 3. 

Example (ii) h(6) s(7)  = sin (n6) ( 1  + r 2 ) - 1  

In  contrast to the preceding example, the bottom variation considered here 
includes a cross-stream variation and the fluid can hence flow around as well as 
over the bottom contours. Further, the height of the topography is zero at the 
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channel walls and hence the velocities are bounded for all values of the Rossby 
number. To evaluate K ,  we proceed as before and determine that 

A ,  = (1 + n2R2)-’, ( 4 . 1 4 ~ )  

4nR[( 1 + n2n2R2) (n2 - 1)I-l (n even), (4.14b) 
An = (0 (n odd,n =!= 1)  (4 .144 

and that B = - 2nR[ ( 1 + 7r2R2) ( 1 - -1. (4.15) 

Numerical calculation shows that for R < 0.135 the maximum negative value of v 
occurs a t  5 = 0 , ~  = va N 0 and a value of E which decreases monotonically from 
1 at  R = 0 to 0.914 a t  R = 0.135. The resulting value of K is presented in figure 3. 
For R > 0.135 the stagnation point again first occurs at  (0, O,l&), where the nega- 
tive horizontal velocity of the Kelvin wave is a maximum. 

We see that, for both these examples, for sufficiently small values of the Rossby 
number the analysis predicts a stagnation point first appearing on the bottom 
of the channel on (example i) or near (example ii) the right-hand wall looking 
downstream, while for larger values of the Rossby number the stagnation point 
occurs high up on the left-hand wall. 

5. Flow in a channel with a lid 

We now consider the flow in a channel with a rigid horizontal lid at a height 
z = H .  The radiation condition which applies to the unbounded channel is re- 
placed by the boundary condition w(x,y, H , t )  = 0, which with (3.10) implies 
that pS(x ,  y, H ,  t )  = 0. Thus the system to be considered is 

(5.1) 
$+R$g = 0 (g = 0,117 (5.2a, b)  

$c = - V E )  ( C  = O ) ,  (5.3) 

$g = 0 (6 = b), (5.4) 

where 6 = NH/(.fL).  (5.5) 

$& + $g = 0, 

Using the methods described in 53, we determine the solution of (5.1)-(5.4) 
for $and thencarryout theFourier transform (3.19) toobtain,afteruseof (3.46a), 

where the A, and B are given by (3.39) and (3.40). We notice that allowing 
for bothupward- anddownward-propagating waves over a slowly varying bottom 
(3.29) yields a response which at  any downstream point, say yo, is proportional 
simply to $(yo) [and $(yo), for example, is not relevant]. 

The essential features of the solution (5.6) are the same as those previously 
considered, in particular the existence of a trapped Kelvin wave which has a 
singular behaviour as the Rossby number tends to zero. The only new feature 
added is the possibility of a resonance if sin (QfR) = 0, that is if 

or, in dimensional terms, NHIV = nn, (5.8) 
C0/R = nn (n = 1,2, ...) (5.7) 
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in which cme a Kelvin wave of undetermined amplitude may be added to any 
solution. We have marked the first five resonance points on figure 3 for a ratio 
M,/ H ,  of maximum obstacle height to channel height, of 0.1. This form of reson- 
ance is a familiar result of linearized analysis applied to flows with lids and has 
been extensively considered for stratified flows without rotation by Miles (1968) 
and Davis (1969)  amongst others. 

6. Flow in a channel with only one wall 
Since the Kelvin wave is trapped near the left-hand wall, we would antici- 

pate that it and the subsequent flow are not significantly affected by removing 
the wall a t  x = L. The flow in the channel of semi-infinite width is described by 

plus an appropriate radiation condition. There is no solution of  (6.1)-(6.4) 
unless h(6) -+ 0 as f -+ co [equation (6 .6)] ,  in particular there is no solution for 
h ( f )  = 1. 

Generalizing the approach of Q 3, we determine the following expression for P, 
which results from the solution of (6.1)-(6.4): 

P ( f , ~ , c )  = .s(v)Sma(h) (sinhf-Rhcoshf)e-*~cdh+Rp8(f) [s(v)sin(c/R) 
0 

- s"(T) COS (C/R)I> (6.5) 

where 

and 

&(A) = 1 m(sin h f -  Rh cos A f )  h(6) df nrh(l+R2h2) 0 

For R = 0, the second term in the integrals in (6.5) and (6.6),  together with the 
last two terms in (6.5) are omitted from the solution. As before, the first term 
in (6.5) represents a modified geostrophic flow which is trapped near the bottom, 
while the second and third term together describe an internal Kelvin wave of 
positive vertical group velocity. 

An examination of the finiteness of the flow (6.5) involves determining the 
magnitude of &(A) for large positive A. Using well-known results in conjunction 
with (6.5a) (Lighthill 1962, example 34) we obtain 

2(7i-R2h4)-l [ h ( O )  + Rh'(O)] + O ( P )  (R  $. 0), (6.8) 

(6.9) a(') N {2(7i-iv)-lh(o) + o(A-4) ( R  = 0). 

Hence the velocities derived from (6.5) are finite for all non-zero R, but the 
downstream and vertical velocities will be infinite for R = 0 at f = 5 = 0 unless 
h(<) -+ 0 as f -+ 0. Further, writing (6.5b) for small R as 

/? - - 2/40) - 2Rh'(O) + O(R2) ,  (6.10) 
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we determine that, in analogy with $4, only if h(E) -+ 0 as f ;  -+ 0 does the hori- 
zontal velocity in the Kelvin wave approach zero as the Rossby number 
approaches zero. 

The value of K may be determined in a manner similar to that described above. 
I n  particular, if h(6) s(7) = e d (  1 +q2)-l, we find that 

a(h) = 2( 1 - R)[T( 1 + R2h2) (1 + h2)]-l, (6.11) 
p =  -2(1+R)- 1 (6.12) 

and that the maximum negative value of v is that due solely to the Kelvin wave 
for all values of R, occurring a t  (0, 0 , 6 )  with a resulting value of &( 1 + R)  for K .  

We have discussed the flow in a cthannel with a left-hand wall only and shown 
that the flow field is a combination of a modified quasi-geostrophic component 
and an internal Kelvin wave. I n  contrast, the flow in a channel with a right-hand 
wall only will consist solely of a modified quasi-geostrophic component since a 
steady internal Kelvin wave cannot exist trapped near a right-hand wall. The 
explicit solution can be obtained by the methods outlined above, but is of minor 
interest and will not be discussed further. 

7. Conclusions 
When a homogeneous fluid flows over a rise in a vertically bounded, rotating 

channel (figure I) it develops negative relative vorticity and is deflected to the 
left in the manner described in 9 2. If the fluid is stratified, the flow consists of a 
combination of a modified quasi-geostrophic flow trapped near the bottom and 
a strictly ageostrophic, internal Kelvin wave trapped near the left-hand wall. 
The modified quasi-geostrophic flow is qualitatively similar to the homogeneous 
flow mentioned previously, with an effective vertical depth supplied by the trap- 
ping length f L / N .  

For a channel with two vertical walls and a bottom elevation which varies in 
the downstream direction only, if 0 < R < 0.048 the minimum downstream 
velocity is due to  the modified quasi-geostrophic component and occurs at the 
base of the right-hand wall. Determining the stagnation condition by extrapola- 
tion, we find that the critical bottom elevation is given by 

No/& N - ( f / N )  R log R 

Kelvin-wave contribution and the critical bottom elevation is given by 

( R  -+ 0). 

If R > 0.048 the minimum downstream velocity occurs a t  the minima of the 

N0/L = &(f /N)  R( 1 + e-lIR) (R > 0.048). 

Qualitatively similar results are valid for more general bottom elevations, as 

For a channel with only a left-hand wall the minimum downstream velocity 
shown for a particular example in figure 3. 

occurs on that wall a t  the minima of the Kelvin wave for all Rossby numbers. 
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Appendix A 
In  this appendix we examine briefly the consequence of relaxing the approxi- 

mations (3.29) considered through the rest of the paper. This will introduce the 
additional effects of inertia-gravity waves. However, the resulting flow can be 
discussed in ways very similar to those already presented. Only the flow in a 
channel with two vertical walls and of infinite height will be considered and we 
thus seek the solution of the system S'. This can be obtained by the methods out- 
lined above to yield 

- RBO(5) [sin (C/R) + i sgn k cos (C/B)], (A 1)  

where 

and 

l-R2k2L2 4 
1 + n2n2R2 n2n2 + k2 L2 

f?,(k) = -- 2nn ( ) < X n , h )  

The inertia-gravity waves are represented in (A 1)  by the contribution to the 
Fourier transform (3.19) for lkLl > R-l and the determination of the sign of the 
radical in (A 1 )  by (A 3) is a consequence of the radiation condition. We note that 
these inertia-gravity waves do not contribute to the solution (3.19) if s(k) has 
support only within -R-l < kL < R-I, that is if there are no variations in 
C(7) on length scales less than R. 

Appendix B 
In  this appendix we examine the convergence of the infinite sum in (4.3). 

This convergence is dependent upon the size of A ,  for large n. Using (3.39), we 
can write 

A ,  = - 2( 1 + n2n2R2)-1~01cos (nn6-t. 8,) h(&) d6, (BJ)  

where tane, = (nnR)-l (0 6 8, < in). (B2) 

Expanding the integrand in (B 1 )  for large n, we obtain 

A ,  N -2(nnR)-1W [I +i(nnB-')] h(g)e-in"rdt [l+O(n-l)], (B3) { 1: 1 
valid for fixed, non-zero R. 

The asymptotic form of the integral in (B 3) can now be evaluated by standard 
techniques (see, for example, Lighthill 1962, 95.5). In  particular, if the bottom 
topography smoothly spans the channel, that is both h(6) and h'(<) are con- 
tinuous in [ O , l ] ,  then 

A ,  - - 2R-l (n~)-~  (( - l), h'( 1)  - h'( 0) + R-l[( - 1 ), h( 1 ) - h( O ) ] )  + O(n-4), (B 4) 
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from which we conclude that the infinite sum in (4.3) is pointwise convergent and 
bounded. This is not necessarily true if R = 0, for which 

A ,  = 2 h([)sinnnEd[ so' 
N - 2( nn)-l[ ( - 1 )" h( 1) - h( O ) ]  + O ( K ~ ) .  

The downstream velocity is then plus (minus) infinity at  the bottom of the 
channel wall, [ = 0 (1) and 6 = 0,  unless h(5) -+ 0 as [ -+ 0 (1). Thus the quasi- 
geostrophic calculation leads to an unacceptable, infinite downstream velocity 
if the bottom topography does not go to zero at  the walls. The conclusions of this 
paragraph also hold for the verticalvelocity, but not for the cross-stream velocity, 
which is always finite. 

Alternatively, if the bottom topography does not completely span the channel, 
with h(5) and h'(5) continuous only in the range say [El, [,I and zero elsewhere, 
then a similar analysis to that of the preceding paragraph proves that the velocity 
for all values of Ris bounded except at  the end of the obstacle [ = tl (&)and 5 = 0, 
unlessh(0 .+ 0 as .$ --f & (E2). That is, the linearized analysisis capable of handling 
most isolated obstacles, but not those with vertical walls, as would occur, for 
example, in a ' top-hat ' cross-section. 
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